Funktionsuntersuchung einer ganzrationalen Funktionenschar

$$f_a(x) = -\frac{1}{3a}x^3 + ax$$
 (a > 0)

1. Definitions bereich $D(f_a) = R$

2. Symmetrieverhalten von $G(f_2)$:

Da im Polynom $f_a(x)$ nur ungerade Exponenten bei den Potenzen von x auftreten, gilt **für alle** $x \in R$: $f_a(-x) = -f_a(x)$, also sind alle $G(f_a)$ punktsymmetrisch zum Ursprung.

3. Achsenschnittpunkte von $G(f_a)$:

$$\mathbf{f_a(x)} = \mathbf{0} \iff -\frac{1}{3a} \mathbf{x}^3 + a \mathbf{x} = 0 \iff \mathbf{x}^3 - 3a^2 \mathbf{x} = 0 \iff \mathbf{x} (\mathbf{x}^2 - 3a^2) = 0$$
$$\iff \mathbf{x} = \mathbf{0} \lor \mathbf{x} = -\mathbf{a}\sqrt{3} \lor \mathbf{x} = \mathbf{a}\sqrt{3}$$

 $G(f_a)$ schneidet die x- Achse in den Punkten $S_{x1}(-a\sqrt{3}/0)$, $S_{x2}(0/0)$ und $S_{x3}(a\sqrt{3}/0)$ $S_{x2}(0/0)$ ist auch der Schnittpunkt S_v mit der y-Achse.

4. Extrempunkte von $G(f_a)$:

$$f_a'(x) = -\frac{1}{a}x^2 + a$$
 und $f_a''(x) = -\frac{2}{a}x$

Notwendige Bedingung: $\mathbf{f_a}'(\mathbf{x}) = \mathbf{0} \Leftrightarrow -\frac{1}{a}\mathbf{x}^2 + \mathbf{a} = 0 \Leftrightarrow \mathbf{x}^2 - \mathbf{a}^2 = 0 \Leftrightarrow \mathbf{x} = -\mathbf{a} \vee \mathbf{x} = \mathbf{a}$

Überprüfen der Extremstellenkandidaten:

$$f_a$$
''(a) = -2 < 0 \Rightarrow HP bei x = a
 f_a ''(-a) = 2 > 0 \Rightarrow TP bei x = -a

$$f_a(a) = -\frac{1}{3a}a^3 + a^2 = -\frac{1}{3}a^2 + a^2 = \frac{2}{3}a^2$$

Aufgrund der Punktsymmetrie zum Ursprung ist $f_a(-a) = -\frac{2}{3}a^2$.

Die $G(f_a)$ besitzen jeweils zwei relative Extrempunkte: einen **Hochpunkt H(a/\frac{2}{3}a^2)** und einen **Tiefpunkt T(-a/-\frac{2}{3}a^2)**.

5. Wendepunkte von G(f_a):

Notwendige Bedingung:
$$f_a$$
"(x) = 0 $\Leftrightarrow -\frac{2}{a}x = 0 \Leftrightarrow x = 0$

Überprüfung des Wendestellenkandidaten:

$$f_a$$
'''(x) = $-\frac{2}{a} \neq 0 \implies \text{WP bei } x = 0$

Alle Graphen $G(f_a)$ besitzen einen Wendepunkt W(0 / 0).

6. Wertebereich: $W(f_a) = IR$

7. Grenzwertverhalten:

$$\lim_{x\to +\infty} f_a(x) = -\infty$$
, da x³ den größeren Beitrag liefert.

8. Zusätzliche Punkte durch Wertetabelle: wegen der Punktsymmetrie nur für $x \in [0; 6]$

	X	0	1	2	3	4	5	6
f	3 (X)	0	2,9	5,1	6	4,9	1,1	-6